Definitions | P   Q, let x,y = A in B(x;y), chain_sys(Cmd), AbsInterface(A), E, chain_config(), P & Q,  x. t(x), x.A(x), pred(e), <a, b>, A, first(e), suptype(S; T), S T, Top, x:A.B(x), Void,  x,y. t(x;y), pred!(e;e'), , SWellFounded(R(x;y)), constant_function(f;A;B), b, , e < e', r s, val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), , type List, Msg(M), kind(e), loc(e), Knd, kindcase(k; a.f(a); l,t.g(l;t) ), EOrderAxioms(E; pred?; info), x:A B(x), IdLnk, left + right, Unit, EqDecider(T), Type, P  Q, strong-subtype(A;B), , Id, f(a), a:A fp B(a), EState(T), ES, x:A. B(x), x:A B(x), t T, s = t, Input, (I|p), input-dcdr{i:l}(es;Cmd;Sys), Sys(valid), x dom(f), (x l), P  Q, A c B, cchead?(x), P Q, cctail?(x), ccsucc?(x), e<e'.P(e), ccpred-id(x), e<e'. P(e), ccpred?(x), (e <loc e'), True, Atom, inl x , tt, "$token", inr x , ff, csinput?(x), X(e), e  X, chain_sys_ind(x;cmd.input(cmd);from,cmds.update(from;cmds)), if b then t else f fi , case b of inl(x) => s(x) | inr(y) => t(y), t.1, E(X), {x:A| B(x)} , valid-sys(es;Config;Sys;e) |